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Abstract
The partly symmetric real Ginibre ensemble consists of matrices formed
as linear combinations of real symmetric and real anti-symmetric Gaussian
random matrices. Such matrices typically have both real and complex
eigenvalues. For a fixed number of real eigenvalues, an earlier work has given
the explicit form of the joint eigenvalue probability density function. We use
this to derive a Pfaffian formula for the corresponding summed up generalized
partition function. This Pfaffian formula allows the probability that there are
exactly k eigenvalues to be written as a determinant with explicit entries. It
can be used too to give the explicit form of the correlation functions, provided
certain skew orthogonal polynomials are computed. This task is accomplished
in terms of Hermite polynomials, and allows us to proceed to analyze various
scaling limits of the correlations, including that in which the matrices are only
weakly non-symmetric.

PACS numbers: 02.30.Gp, 02.10.Yn

1. Introduction

In random matrix theory the Ginibre ensembles [14] refer to Gaussian random matrices with
either real, complex or real quaternion entries, which are all independent. In distinction to
ensembles of Hermitian matrices, the support of the eigenvalues in the Ginibre ensembles is
a disk in the complex plane. Thus, the eigenvalue distribution can be regarded as specifying
a point process in a two-dimensional domain. In this paper, we will study the point process
associated with the eigenvalue distribution for random matrices which interpolate between
the real Ginibre ensemble and the Gaussian orthogonal ensemble (GOE) of real symmetric
matrices.

The two-dimensional point process associated with the eigenvalue distribution for random
matrices which interpolate between the complex Ginibre ensemble and the Gaussian unitary
ensemble (GUE) of complex Hermitian matrices has been the subject of an earlier study
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[13]. Similarly, the eigenvalue distribution for random matrices interpolating between the real
quaternion Ginibre ensemble and the Gaussian symplectic ensemble (GSE) of real quaternion
Hermitian matrices has also been analyzed as a point process [17]. The interpolating ensemble
to be studied herein is thus the last of those naturally associated with the Ginibre ensembles
to be considered from this viewpoint. Such studies are well motivated for their relevance to
Efetov’s theory of directional quantum chaos [8], in which a special role is played by the
interpolating ensembles in the weak non-Hermiticity limit.

The point processes associated with the Ginibre ensembles have the feature of being
proportional to e−βU for potentials U which are the sum of one- and two-body terms, the two-
body terms being logarithmic. As the logarithmic pair potential is that for two-dimensional
charges, there is thus an analogy with the equilibrium statistical mechanics of certain two-
dimensional one-component Coulomb systems (see e.g. [9] and references therein). This
is most immediate in the case of the complex Ginibre ensemble, for which the eigenvalue
probability density function (PDF) is proportional to e−βU with β = 2 and

U = 1

2

N∑
l=1

|zl|2 −
∑

1�j<k�N

log|zk − zj |, zj := xj + iyj . (1.1)

Potential (1.1) is due to N unit two-dimensional charges, repelling via the logarithmic pair
potential −log|z − z′|, and with a smeared out disk of uniform neutralizing charge centred
about the origin of charge density −1/π , which creates the one-body harmonic potential
1
2 |z|2. Note that the disk must have radius

√
N to neutralize the N mobile charges. As we

expect equilibrium Coulomb systems to be locally charge neutral (otherwise an electric field
would be created, and the system would go out of equilibrium), the particle density should
to leading order also be a disk centred about the origin of radius

√
N , a fact which can be

checked upon exact calculation of the one-point correlation. We remark that recently variants
on the eigenvalue problem for complex Ginibre matrices have been formulated [19], which
have analogies with one-component Coulomb systems on the surface of a sphere [4] and in a
hyperbolic disk [16] (in relation to the latter see too the work [21] on certain random complex
polynomials).

The eigenvalue PDF for matrices interpolating between the complex Ginibre ensemble
and the Gaussian unitary ensemble also has a Coulomb gas analogy. Such matrices
can be written in the form H + ivA, where H and A are Hermitian matrices from the
Gaussian unitary ensemble, scaled so that the joint PDF of the elements is proportional
to exp

(− 1
1+τ

TrX2
)
, τ = (1 − v2)/(1 + v2). The eigenvalue PDF can be computed as being

proportional to [13]

exp

⎛
⎝− 1

1 − τ 2

N∑
j=1

(
|zj |2 − τ

2

(
z2
j + z̄2

j

))⎞
⎠ ∏

1�j<k�N

|zk − zj |2. (1.2)

Here the one-body potential can be interpreted as being due to a uniformly charged ellipse,
charge density −1/π(1 − τ 2), semi-axes A and B given by [10, 12]

A =
√

N(1 + τ), B =
√

N(1 − τ). (1.3)

Again, one can anticipate that the particle density will to leading order be of this same shape,
a fact which can be verified by exact computation of the one-point correlation [12].

As for the complex Ginibre ensemble, the leading eigenvalue support of the real Ginibre
ensemble is also a disk [6]. Moreover, in the case of matrices interpolating between the real
Ginibre ensemble and the GOE, it has been anticipated that the support will be an ellipse [20].
By exact calculation of the one-point function, verification of this fact is given in section 5.1
below.
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We begin in section 2 by defining matrices interpolating between the real Ginibre ensemble
and the GOE in terms of a linear combination of random real symmetric and anti-symmetric
matrices. Knowledge of the eigenvalue PDF for the real Ginibre ensemble allows the
eigenvalue PDF of such matrices to be computed exactly. The resulting functional form
is of an identical structure to that for the real Ginibre ensemble, allowing in particular the
corresponding generalized partition function to be written as a Pfaffian. This is considered
in section 3 and used to give the probability pk,N that an N × N (N even) member of the
interpolating ensemble has exactly k real eigenvalues as a determinant of size N/2. The Pfaffian
formula for the generalized partition function implies the k-point correlation functions can be
written as a 2k ×2k Pfaffian, with entries given in terms of skew orthogonal polynomials. The
latter are with respect to the skew inner product corresponding to the entries of the Pfaffian.
The main technical task is the computation of these skew orthogonal polynomials, which is
undertaken in section 4. In section 5 simple expressions in terms of Hermite polynomials are
obtained. The final section, section 6, is concerned with various scaled limits of the real–real
and complex–complex correlations. For fixed τ the forms obtained are identical to the τ = 0
case (real Ginibre ensemble) except for a simple scaling of the coordinates which accounts
for the change in the two-dimensional density. The case τ = 0 has been previously studied in
[11, 25] and most comprehensively in the work of Borodin and Sinclair [3] (this latter work
treats too the general real–complex correlations). The weakly non-symmetric limit of the
correlations is also computed.

2. Definition of the ensemble and the eigenvalue PDF

Let S be an element of the Gaussian orthogonal ensemble of N × N real symmetric matrices,
and thus have PDF of its independent elements proportional to e−TrS2/2 (equivalently, the
diagonal elements have distribution N [0, 1] while the strictly upper triangular elements have
distribution N [0, 1/

√
2]). Let A be an element of the anti-symmetric Gaussian orthogonal

ensemble of real anti-symmetric matrices which has PDF of its independent elements
proportional to eTrA2/2 (each strictly upper triangular element is thus independently distributed
according to N [0, 1/

√
2]). With 0 < τ < 1 and c := (1 − τ)/(1 + τ) define random matrices

X according to

X = 1√
b
(S +

√
cA). (2.1)

When τ = 0 and b = 1, X = S +A. In this case each element of X is independently distributed
as a standard Gaussian N [0, 1] and so X is a member of the real Ginibre ensemble. When
τ = 1 and b = 1, X = S and so X is a member of the GOE. Thus, X interpolates between the
real Ginibre ensemble and the GOE as the parameter τ is varied from 1 down to 0.

The probability measure associated with the matrices S and A is

(2π)−N/2π−N(N−1)/2 e−(TrS2−TrA2)/2(dA)(dS). (2.2)

From (2.1) we compute that

(dX) = 2N(N−1)/2(
√

c)N(N−1)/2(
√

b)−N2
(dS)(dA),

and we too observe that S and A can be written in terms of X and XT . Thus we can change
variables in (2.2) to obtain for the PDF of the matrices X

Aτ,b exp

(
− b

2(1 − τ)
(Tr XXT − τTr X2)

)
, (2.3)
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where

Aτ,b = (
√

c)−N(N−1)/2(
√

b)N
2
(2π)−N2/2. (2.4)

We seek the eigenvalue PDF corresponding to (2.3).
A fundamental point is that because X is real, there is a non-zero probability that

the eigenvalue will be real, and furthermore all complex eigenvalues must occur in
complex conjugate pairs. Thus the eigenvalue PDF decomposes into a sum of PDFs
Pk,(N−k)/2({λj }j=1,...,k; {xj ±iyj }j=1,...,(N−k)/2; τ, b) corresponding to having k real eigenvalues
{λj }j=1,...,k and (N − k)/2 complex conjugate pairs of eigenvalues {xj ± iyj }j=1,...,(N−k)/2 (for
this to be non-zero k and N must have the same parity, a condition which will henceforth be
assumed). In the case τ = 0 and b = 1 the probability Pk,(N−k)/2 has been computed explicitly
in [6, 20, 23] to give

Pk,(N−k)/2({λj }j=1,...,k; {xj ± iyj }j=1,...,(N−k)/2; 0, 1)

= 1

2N(N+1)/4
∏N

l=1 �(l/2)

2(N−k)/2

k!((N − k)/2)!

×
∣∣∣∣�({λl}l=1,...,k ∪ {xj ± iyj }j=1,...,(N−k)/2)

∣∣∣∣
× e− ∑k

j=1 λ2
j /2 e

∑(N−k)/2
j=1 (y2

j −x2
j )

(N−k)/2∏
j=1

erfc(
√

2yj ), (2.5)

where �({zp}p=1,...,m) := ∏m
j<l(zl − zj ). In fact the eigenvalue PDF for general τ and b is

closely related to this functional form.
In the case τ = 0 and b = 1 we read off from (2.3) that the PDF of the elements of X is

given by A0,1 e−TrXXT /2. With X �→ √
bX/(1 − τ)1/2 this latter PDF becomes

A0,1b
N2/2(1 − τ)−N2/2 e−b TrXXT /2(1−τ), (2.6)

while the eigenvalue PDF is obtained from (2.5) by a simple scaling and so is equal to

bN/2(1 − τ)−N/2Pk,(N−k)/2({
√

bλj/(1 − τ)1/2}j=1,...,k;
{
√

bxj/(1 − τ)1/2 ± i
√

byj/(1 − τ)1/2}j=1,...,(N−k)/2; 0, 1).

Now (2.6) is a factor in (2.3) while the remaining factor proportional to exp
(

τb
2(1−τ)

TrX2
)

can
immediately be written in terms of the eigenvalues of X. It follows from these considerations
that [20]

Pk,(N−k)/2({λj }j=1,...,k; {xj ± iyj }j=1,...,(N−k)/2; τ, b)

= Aτ,b

A0,1
(1 − τ)N(N−1)/2 exp

⎛
⎝ τb

2(1 − τ)

⎛
⎝ k∑

j=1

λ2
j + 2

(N−k)/2∑
j=1

(
x2

j − y2
j

)⎞⎠
⎞
⎠ Pk,(N−k)/2

({
√

bλj/(1 − τ)1/2}j=1,...,k; {
√

bxj/(1 − τ)1/2 ± i
√

byj/(1 − τ)1/2}j=1,...,(N−k)/2; 0, 1)

= (
√

b)N(N+1)/2(
√

1 + τ)N(N−1)/2

2N(N+1)/4
∏N

l=1 �(l/2)

2(N−k)/2

k!((N − k)/2)!

× |�({λl}l=1,...,k ∪ {xj ± iyj }j=1,...,(N−k)/2)|

× e−b
∑k

j=1 λ2
j /2 eb

∑(N−k)/2
j=1 (y2

j −x2
j )

(N−k)/2∏
j=1

erfc

(√
2b

1 − τ
yj

)
. (2.7)

Integrating Pk,(N−k)/2 over λj ∈ R(j = 1, . . . , k) and (xj , yj ) ∈ R
+
2(j = 1, . . . , (N −

k)/2), where R
+
2 := {(x, y) ∈ R

2 : y > 0} gives the probability pk,N say that a matrix of

4



J. Phys. A: Math. Theor. 41 (2008) 375003 P J Forrester and T Nagao

form (2.1) has exactly k real eigenvalues. The parameter b then scales out of the problem
and so for convenience may be set equal to unity. A discussion of a systematic approach to
the calculation of these probabilities is given in section 3 below. The case k = N , when all
eigenvalues are real, is special and can be considered immediately. Thus, comparing (2.5) and
(2.7) one sees that

PN,0({λj }j=1,...,N ; τ, 1) = (
√

b)N
2/2(

√
1 + τ)N(N−1)/2PN,0({λj }j=1,...,N ; 0, 1).

But we know from [6] that pN,N | τ=0
b=1

= 2−N(N−1)/4 and so for general 0 � τ � 1

pN,N =
(

2

1 + τ

)−N(N−1)/4

. (2.8)

3. Generalized partition function and the probabilities pk↪N

The generalized partition function associated with PDF (2.7) is defined by

Zk,(N−k)/2[u, v] =
∫ ∞

−∞
dλ1 · · ·

∫ ∞

−∞
dλk

k∏
l=1

u(λl)

∫
R

2
+

dx1 dy1 · · ·
∫

R
2
+

dx(N−k)/2 dy(N−k)/2

×
(N−k)/2∏

l=1

v(xl, yl)Pk,N−k({λj }j=1,...,k; {xj ± iyj }j=1,...,(N−k)/2; τ, b). (3.1)

In view of the functional form (2.7) this is structurally identical to the case τ = 0 and b = 1,
when a Pfaffian formula is known [24]. Consequently, (3.1) too has a Pfaffian evaluation.

Proposition 1. Let {pl−1(x)}l=1,...,N be a set of monic polynomials of the indexed degree, and
let

αj,k[u] =
∫ ∞

−∞
dxu(x)

∫ ∞

−∞
dyu(y) e−b(x2+y2)/2pj−1(x)pk−1(y) sgn(y − x) (3.2)

βj,k[v] = 2i
∫

R
2
+

dx dyv(x, y) eb(y2−x2) erfc

(√
2b

1 − τ
y

)

× (
pj−1(x + iy)pk−1(x − iy) − pk−1(x + iy)pj−1(x − iy)

)
. (3.3)

For k,N even we have

Zk,(N−k)/2[u, v] = (
√

1 + τ)N(N−1)/2

2N(N+1)/4
∏N

l=1 �(l/2)
[ζ k/2]Pf[ζαj,l[u] + βj,l[v]]j,l=1,...,N , (3.4)

where [ζ p]f (ζ ) denotes the coefficient of ζ p in f (ζ ).

We remark that the Pfaffian operation applies to even-dimensional anti-symmetric
matrices; formula (3.4) therefore requires modification for N odd. Such a modification is
known [24], but to avoid having to consider separately the cases N even and N odd, only the
case N even will be considered hereforth (it is planned to address the case N odd in a separate
publication).

From the definitions, Zk,(N−k)/2[1, 1] = pk,N and so we have

pk,N = (
√

1 + τ)N(N−1)/2

2N(N+1)/4
∏N

l=1 �(l/2)
[ζ k/2]Pf[ζαj,l[1] + βj,l[1]]j,l=1,...,N

∣∣∣∣
b=1

(3.5)

5
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(it is valid to set b = 1 since as noted below (2.7) pk,N is independent of b). Suppose for
definiteness that in (3.2) we choose pj (x) = xj (j = 0, . . . , N − 1). Changing variables
x �→ −x, y �→ −y shows

α2j,2k[1] = α2j−1,2k−1[1] = 0, (3.6)

while we see by introducing polar coordinates and changing variables θ �→ π − θ that
furthermore

β2j,2k[1] = β2j−1,2k−1[1] = 0. (3.7)

Equations (3.6) and (3.7) give that the matrix in (3.5) has a checkerboard pattern of zeros.
Recalling the general formula (PfA)2 = det A, rearranging rows and columns in A so that all
non-zero entries are in the top right and bottom right N ×N blocks, and using the fact that the
entries are anti-symmetric shows the Pfaffian can be written as a determinant of half its size.
Thus

pk,N = (
√

1 + τ)N(N−1)/2

2N(N+1)/4
∏N

l=1 �(l/2)
[ζ k/2] det[ζα2j−1,2k[1] + β2j−1,2k[1]]j,k=1,...,N/2, (3.8)

where the quantities in the determinant have b = 1.
Consider now the evaluation of the entries in determinant (3.8). In relation to α2j−1,2k[1]

integration by parts shows

α2j−1,2k[1] = 2(k − 1)α2j−1,2k−2[1] + 2�(j + k − 3/2)

and thus we obtain the explicit formula

α2j−1,2k[1] = 2k(k − 1)!
k∑

p=1

�(j + p − 3/2)

2p−1(p − 1)!
. (3.9)

For β2j−1,2k[1] we see from the definition that

β2j−1,2k[1] = −4Im
∫

R
+

dx dy ey2−x2
erfc

(√
2

1 − τ
y

)
(x + iy)2j−2(x − iy)2k−1

= −4
2j−2∑
l=0

2k−1∑
p=0

l+p odd

(
2j − 2

l

) (
2k − 1

p

)
(−1)p�(j + k − 1 − (l + p)/2)Il+p, (3.10)

where

Ij :=
∫ ∞

0
yj erfc

(√
2

1 − τ

)
ey2

dy (j odd).

Integration by parts shows

Ij = − (j − 1)

2
Ij−2 +

1√
π

√
2

1 − τ

(
1 − τ

1 + τ

)j/2 1

2
�(j/2) − 1

2
δj,1.

This recurrence has solution

Ij = (−1)(j−1)/2((j − 1)/2)!

2

⎛
⎝√

2

1 + τ

(j−1)/2∑
p=0

(−1)p
(

1 − τ

1 + τ

)p
(1/2)p

p!
− 1

⎞
⎠ (3.11)

which makes β2j−1,2k[1] explicit. In the case τ = 0 (3.11) reduces to a result of Edelman [6].
Some remarks on the calculation of pk,N in the case τ = 0 obtained in earlier works are

in order. The exact values of pk,N , which are of the form a + b
√

2 with a and b being rational,

6
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for N up to 9 were first tabulated in [6], by direct integration of (2.5). The latter involves
combining N ! terms, and so is not practical for larger N. A formula closely related to (3.5)
was given in [18], thereby allowing for a tabulation in polynomial time in N, while formula
(3.5) itself in the case τ = 0 was given in [11]. A determinant formula equivalent to (3.8),
but derived using a different strategy, is given in [1]. This latter work (see also [18]) gives
that pk,N can be written as an elementary symmetric polynomial, expanded in the power sum
basis, with entries read off from the entries of the corresponding case of Pfaffian (3.5). Such
a result is a consequence of the so-called Pfaffian integration theorem [2] and also holds for
general τ , although we do not pursue the details.

4. Correlations and skew orthogonal polynomials

As realizations of X are not conditioned on the number of real eigenvalues k, the generalized
partition function ZN [u, v] appropriate for calculation of the correlation functions is obtained
by summing (3.1) over all allowed k,

ZN [u, v] =
N∑

k=0
k even

Zk,(N−k)/2[u, v].

It follows from (3.4) that

ZN [u, v] = (
√

1 + τ)N(N−1)/2

2N(N+1)/4
∏N

l=1 �(l/2)
Pf[ζαj,l[u] + βj,l[v]]j,l=1,...,N . (4.1)

Correlation functions can be calculated from this by functional differentiation. For example,
the n-point correlation function between real eigenvalues at x1, . . . , xn is given by

ρr
(n)(x1, . . . , xn) = 1

ZN [1, 1]

δn

δu(x1) · · · δu(xn)
ZN [u, 1]

∣∣∣∣
u=1

. (4.2)

Moreover, all n-point correlation functions can be expressed in terms of a 2k × 2k

Pfaffian [3] (see also [11] in the case of all real eigenvalues in the correlation, or all complex
eigenvalues). The structure of these formulae is the same for all allowed τ and b, which is a
consequence of the structure of the entries of (4.1) being the same for all allowed τ and b. In
particular, in case (4.2)

ρr
(n)(x1, . . . , xn) = Pf

[
−Ĩ r(xj , xk) Sr(xj , xk)

−Sr(xk, xj ) Dr(xj , xk)

]
, (4.3)

where with

�k(x) :=
∫ ∞

−∞
sgn(x − y)pk(y) e−y2/2(1+τ) dy (4.4)

one has

Sr(x, y) =
N/2−1∑
k=0

e−y2/2(1+τ)

uk

(�2k(x)p2k+1(y) − �2k+1(x)p2k(y)) (4.5)

Dr(x, y) = ∂

∂x
Sr(x, y), Ĩ r(x, y) = 1

2
sgn(y − x) −

∫ y

x

Sr(x, z) dz. (4.6)

7
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We too note the explicit Pfaffian formula for the correlation between complex eigenvalues

ρc
(n)((x1, y1), . . . , (xn, yn)) =

n∏
l=1

(
2i e(y2

l −x2
l )/(1+τ) erfc

(√
2

1 − τ 2
yl

))

× Pf

[
Sc

τ (z̄j , z̄k) Sc
τ (z̄j , zk)

Sc
τ (zj , z̄k) Sc

τ (zj , zk)

]
, (4.7)

where zj := xj + iyj and with q2j−2(z) := −p2j−1(z), q2j−1(z) := p2j−2(z),

Sc
τ (w, z) =

N∑
j=1

pj−1(w)qj−1(z)

u[(j−1)/2]
. (4.8)

The dependence on τ comes in through the requirements of the polynomials {pj (x)}j=0,1,....
In addition to being monic of the appropriate degree as in proposition 1, they must be skew
orthogonal with respect to the skew inner product associated with the matrix in (4.1) for
u = v = 1.

Explicitly, this inner product reads as

(f, g) := (f, g)r + (f, g)c (4.9)

with

(f, g)r :=
∫ ∞

−∞
dx

∫ ∞

−∞
dy e−b(x2+y2)/2f (x)g(y) sgn(y − x)

(f, g)c := 2i
∫

R
2
+

dx dy eb(y2 − x2) erfc

(√
2b

1 − τ
y

)
(f (x + iy)g(x − iy)− g(x + iy)f (x − iy)).

The set {pj (x)}j=0,1,... is said to be skew orthogonal if

(p2j , p2k) = (p2j+1, p2k+1) = 0

(j, k = 0, 1, . . .) (p2j , p2k+1) = 0

(j, k = 0, 1, . . . j �= k),

while (p2j , p2j+1) = uj �= 0. The main technical task then is to compute these polynomials.
Note that the parameter b acts as a scale of the coordinates, and so there is no loss of generality
in setting b to a specific value. It turns out that a convenient choice is b = 1/(1 + τ). Making
this choice, the skew inner product of interest reads as

〈f, g〉 := 〈f, g〉r + 〈f, g〉c (4.10)

with

〈f, g〉r :=
∫ ∞

−∞
dx

∫ ∞

−∞
dy e− x2+y2

2(1+τ) f (x)g(y) sgn(y − x),

〈f, g〉c := 2i
∫ ∞

−∞
dx

∫ ∞

0
dy e

y2−x2

1+τ erfc

(√
2

1 − τ 2
y

)

× [f (x + iy)g(x − iy) − g(x + iy)f (x − iy)].

Theorem 1. Introduce the scaled monic Hermite polynomials

Cn(z) =
(τ

2

)n/2
Hn

(
z√
2τ

)
. (4.11)

The family of monic polynomials {Rj(z)}j=0,1,... with

R2n+1(z) = C2n+1(z) − 2nC2n−1(z), R2n(z) = C2n(z) (4.12)

8
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are skew orthogonal with respect to the skew inner product (4.10). Furthermore, the
normalization rn is given by

rn := 〈R2n, R2n+1〉 = (2n)!2
√

2π(1 + τ). (4.13)

Before proceeding to the proof of this result, which will be done in the following section,
we make note of two corollaries. The first is that the Hermite polynomial properties

d

dz
Cn(z) = nCn−1(z), (4.14)

zCn(z) = Cn+1(z) + nτCn−1(z). (4.15)

allow us to verify that the first of the two formulae in (4.12) can be rewritten to read as

R2n+1(z) = −(1 + τ) ez2/2(1+τ) d

dz
(e−z2/2(1+τ)C2n(z)). (4.16)

Use will be made of this form in the analysis of correlations (4.3). The second is that taking
the limit τ → 0 in theorem 1 gives the family of skew orthogonal relevant to the real Ginibre
ensemble, a result which was announced and made use of in [11].

Corollary 1. The family of monic polynomials {pj (z)}j=0,1,... specified by

p2n+1(z) = z2n+1 − 2nz2n−1, p2n(z) = z2n (4.17)

are skew orthogonal with respect to the skew inner product (4.10) in the case τ = 0. The
corresponding normalization is given by

un := 〈p2n, p2n+1〉 = (2n)!2
√

2π. (4.18)

5. Proof of theorem 1

Note that R2n+1(z) is an odd polynomial while R2n(z) is even. These properties are sufficient
for the derivation of (3.6) and (3.7) so it is immediate that

〈R2j , R2k〉 = 〈R2j+1, R2k+1〉 = 0. (5.1)

It remains to verify that

〈R2j+1, R2k〉 = 0 (5.2)

for k �= j , and that for k = j normalization (4.13) results. This will be done by computing
the explicit form of the skew inner product between C2j+1 and C2k ,

〈C2j+1, C2k〉 =
{

−2j+k+(3/2)j !�
(
k + 1

2

)
(1 + τ), j � k,

0, j < k.
(5.3)

Assuming (5.3), the explicit formulae (4.12) show that (5.2) is valid and furthermore give
normalization (4.13). The task is thus reduced to proving (5.3). For this, repeated use will be
made of properties (4.14), (4.15) of the Hermite polynomials (4.11).

Let us first define

Ij,k =
∫ ∞

−∞
dx

∫ ∞

−∞
dy e− x2+y2

2(1+τ) C2j+1(x)C2k(y) sgn(y − x). (5.4)

9
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Then a partial integration over x gives

Ij,k =
∫ ∞

−∞
dy e− y2

2(1+τ) C2k(y)

[
e− x2

2(1+τ)
C2j+2(x)

2j + 2
sgn(y − x)

]x=∞

x=−∞

+
1

1 + τ

∫ ∞

−∞
dx

∫ ∞

−∞
dy e− x2+y2

2(1+τ)
xC2j+2(x)

2j + 2
C2k(y) sgn(y − x)

+
∫ ∞

−∞
dx

∫ ∞

−∞
dy e− x2+y2

2(1+τ)
C2j+2(x)

2j + 2
C2k(y)2δ(y − x)

= 1

1 + τ

1

2j + 2

∫ ∞

−∞
dx

∫ ∞

−∞
dy e− x2+y2

2(1+τ) C2j+3(x)C2k(y) sgn(y − x)

+
τ

1 + τ

∫ ∞

−∞
dx

∫ ∞

−∞
dy e− x2+y2

2(1+τ) C2j+1(x)C2k(y) sgn(y − x)

+
2

2j + 2

∫ ∞

−∞
dx e− x2

1+τ C2j+2(x)C2k(x)

= 1

1 + τ

1

2j + 2
Ij+1,k +

τ

1 + τ
Ij,k +

2

2j + 2

ξj,k

1 + τ
, (5.5)

where

ξj,k = (1 + τ)

∫ ∞

−∞
dx e− x2

1+τ C2j+2(x)C2k(x). (5.6)

Similarly a partial integration over y gives

Ij,k =
∫ ∞

−∞
dx e− x2

2(1+τ) C2j+1(x)

[
e− y2

2(1+τ)
C2k+1(y)

2k + 1
sgn(y − x)

]y=∞

y=−∞

+
1

1 + τ

∫ ∞

−∞
dx

∫ ∞

−∞
dy e− x2+y2

2(1+τ) C2j+1(x)
yC2k+1(y)

2k + 1
sgn(y − x)

−
∫ ∞

−∞
dx

∫ ∞

−∞
dy e− x2+y2

2(1+τ) C2j+1(x)
C2k+1(y)

2k + 1
2δ(y − x)

= 1

1 + τ

1

2k + 1

∫ ∞

−∞
dx

∫ ∞

−∞
dy e− x2+y2

2(1+τ) C2j+1(x)C2k+2(y) sgn(y − x)

τ

1 + τ

∫ ∞

−∞
dx

∫ ∞

−∞
dy e− x2+y2

2(1+τ) C2j+1(x)C2k(y) sgn(y − x)

− 2

2k + 1

∫ ∞

−∞
dx e− x2

1+τ C2j+1(x)C2k+1(x)

= 1

1 + τ

1

2k + 1
Ij,k+1 +

τ

1 + τ
Ij,k − 2

2k + 1

ηj,k

1 + τ
, (5.7)

where

ηj,k = (1 + τ)

∫ ∞

−∞
dx e− x2

1+τ C2j+1(x)C2k+1(x). (5.8)

Thus we obtain recursion relations

Ij+1,k = (2j + 2)Ij,k − 2ξj,k, Ij,k+1 = (2k + 1)Ij,k + 2ηj,k. (5.9)

Let us next derive the recursion relations for

Jj,k = 2i
∫ ∞

−∞
dx

∫ ∞

0
dy e

y2−x2

1+τ erfc(γy)

× [C2j+1(x + iy)C2k(x − iy) − C2k(x + iy)C2j+1(x − iy)] (5.10)

10



J. Phys. A: Math. Theor. 41 (2008) 375003 P J Forrester and T Nagao

with

γ =
√

2

1 − τ 2
. (5.11)

For that purpose, we consider an integral

Kj,k = 2i
∫ ∞

−∞
dx

∫ ∞

0
dy e

y2−x2

1+τ erfc(γy)

× [C2j+2(x + iy)C2k−1(x − iy) − C2k−1(x + iy)C2j+2(x − iy)]. (5.12)

For k � 1, a partial integration over x gives

Kj,k = 2i
∫ ∞

0
dy e

y2

1+τ erfc(γy)

[
e− x2

1+τ C2j+2(x + iy)
C2k(x − iy)

2k

]x=∞

x=−∞

+ 4i
1

1 + τ

∫ ∞

−∞
dx

∫ ∞

0
dy e

y2−x2

1+τ erfc(γy)xC2j+2(x + iy)
C2k(x − iy)

2k

− 2i
∫ ∞

−∞
dx

∫ ∞

0
dy e

y2−x2

1+τ erfc(γy)(2j + 2)C2j+1(x + iy)
C2k(x − iy)

2k
+ c.c.

= 2i

k

1

1 + τ

∫ ∞

−∞
dx

∫ ∞

0
dy e

y2−x2

1+τ erfc(γy)xC2j+2(x + iy)C2k(x − iy)

− 2i
j + 1

k

∫ ∞

−∞
dx

∫ ∞

0
dy e

y2−x2

1+τ erfc(γy)C2j+1(x + iy)C2k(x − iy) + c.c.

(5.13)

On the other hand, a partial integration over y gives

Kj,k = 2i
∫ ∞

−∞
dx e− x2

1+τ

[
e

y2

1+τ erfc(γy)C2j+2(x + iy)
iC2k(x − iy)

2k

]y=∞

y=0

− 4i
1

1 + τ

∫ ∞

−∞
dx

∫ ∞

0
dy e

y2−x2

1+τ erfc(γy)yC2j+2(x + iy)
iC2k(x − iy)

2k

+ 2i
∫ ∞

−∞
dx

∫ ∞

0
dy e

y2−x2

1+τ erfc(γy)(2j + 2)C2j+1(x + iy)
C2k(x − iy)

2k

+ 2i
2γ√
π

∫ ∞

−∞
dx

∫ ∞

0
dy e

y2−x2

1+τ e−(γy)2
C2j+2(x + iy)

iC2k(x − iy)

2k
+ c.c.

+
1

k

∫ ∞

−∞
dx e− x2

1+τ C2j+2(x)C2k(x)

− 2i

k

1

1 + τ

∫ ∞

−∞
dx

∫ ∞

0
dy e

y2−x2

1+τ erfc(γy) iyC2j+2(x + iy)C2k(x − iy)

+ 2i
j + 1

k

∫ ∞

−∞
dx

∫ ∞

0
dy e

y2−x2

1+τ erfc(γy)C2j+1(x + iy)C2k(x − iy)

− 2

k

√
2

π(1 − τ 2)

∫ ∞

−∞
dx

∫ ∞

0
dy e− x2

1+τ
− y2

1−τ C2j+2(x + iy)C2k(x − iy) + c.c.

(5.14)

11
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Comparing (5.13) and (5.14), we obtain

2i

k

1

1 + τ

∫ ∞

−∞
dx

∫ ∞

0
dy e

y2−x2

1+τ erfc(γy)(x + iy)C2j+2(x + iy)C2k(x − iy)

− 4i
j + 1

k

∫ ∞

−∞
dx

∫ ∞

0
dy e

y2−x2

1+τ erfc(γy)C2j+1(x + iy)C2k(x − iy)2k + c.c.

= 2

k

∫ ∞

−∞
dx e− x2

1+τ C2j+2(x)C2k(x)

− 2

k

√
2

π(1 − τ 2)

∫ ∞

−∞
dx

∫ ∞

0
dy e− x2

1+τ
− y2

1−τ

× [C2j+2(x + iy)C2k(x − iy) + C2j+2(x − iy)C2k(x + iy)]. (5.15)

Therefore, noting (4.15) and the orthogonality relation (see e.g. [12])∫ ∞

−∞
dx

∫ ∞

−∞
dy e− x2

1+τ e− y2

1−τ Cm(x + iy)Cn(x − iy) = πm!
√

1 − τ 2δm,n, (5.16)

we can derive

Jj+1,k = (2j + 2)Jj,k + 2ξj,k − 2
√

2π(2j + 2)!(1 + τ)δj+1,k. (5.17)

In order to derive another recursion relation, we similarly employ partial integrations to find

Kj−1,k+1 = 2i
∫ ∞

0
dy e

y2

1+τ erfc(γy)

[
e− x2

1+τ
C2j+1(x + iy)

2j + 1
C2k+1(x − iy)

]x=∞

x=−∞

+ 4i
1

1 + τ

∫ ∞

−∞
dx

∫ ∞

0
dy e

y2−x2

1+τ erfc(γy)
C2j+1(x + iy)

2j + 1
xC2k+1(x − iy)

− 2i
∫ ∞

−∞
dx

∫ ∞

0
dy e

y2−x2

1+τ erfc(γy)
C2j+1(x + iy)

2j + 1
(2k + 1)C2k(x − iy) + c.c.

= 4i

2j + 1

1

1 + τ

∫ ∞

−∞
dx

∫ ∞

0
dy e

y2−x2

1+τ erfc(γy)C2j+1(x + iy)xC2k+1(x − iy)

− 2i
2k + 1

2j + 1

∫ ∞

−∞
dx

∫ ∞

0
dy e

y2−x2

1+τ erfc(γy)C2j+1(x + iy)C2k(x − iy) + c.c.

(5.18)

and

Kj−1,k+1 = 2i
∫ ∞

−∞
dx e− x2

1+τ

[
e

y2

1+τ erfc(γy)
C2j+1(x + iy)

i(2j + 1)
C2k+1(x − iy)

]y=∞

y=0

− 4i
1

1 + τ

∫ ∞

−∞
dx

∫ ∞

0
dy e

y2−x2

1+τ erfc(γy)
C2j+1(x + iy)

i(2j + 1)
yC2k+1(x − iy)

+ 2i
∫ ∞

−∞
dx

∫ ∞

0
dy e

y2−x2

1+τ erfc(γy)
C2j+1(x + iy)

2j + 1
(2k + 1)C2k(x − iy)

+ 2i
2γ√
π

∫ ∞

−∞
dx

∫ ∞

0
dy e

y2−x2

1+τ e−(γy)2 C2j+1(x + iy)

i(2j + 1)
C2k+1(x − iy) + c.c.

= − 2

2j + 1

∫ ∞

−∞
dx e− x2

1+τ C2j+1(x)C2k+1(x)

+
4i

2j + 1

1

1 + τ

∫ ∞

−∞
dx

∫ ∞

0
dy e

y2−x2

1+τ erfc(γy)C2j+1(x + iy) iyC2k+1(x − iy)

12
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+ 2i
2k + 1

2j + 1

∫ ∞

−∞
dx

∫ ∞

0
dy e

y2−x2

1+τ erfc(γy)C2j+1(x + iy)C2k(x − iy)

+
4

2j + 1

√
2

π(1 − τ 2)

∫ ∞

−∞
dx

×
∫ ∞

0
dy e− x2

1+τ
− y2

1−τ C2j+1(x + iy)C2k+1(x − iy) + c.c. (5.19)

A comparison of (5.18) and (5.19) yields

4i

2j + 1

1

1 + τ

∫ ∞

−∞
dx

∫ ∞

0
dy e

y2−x2

1+τ erfc(γy)C2j+1(x + iy)(x − iy)C2k+1(x − iy)

− 4i
2k + 1

2j + 1

∫ ∞

−∞
dx

∫ ∞

0
dy e

y2−x2

1+τ erfc(γy)C2j+1(x + iy)C2k(x − iy) + c.c.

= − 4

2j + 1

∫ ∞

−∞
dx e− x2

1+τ C2j+1(x)C2k+1(x)

+
4

2j + 1

√
2

π(1 − τ 2)

∫ ∞

−∞
dx

∫ ∞

0
dy e− x2

1+τ
− y2

1−τ

× [C2j+1(x + iy)C2k+1(x − iy) + C2j+1(x − iy)C2k+1(x + iy)]. (5.20)

As before it follows that

Jj,k+1 = (2k + 1)Jj,k − 2ηj,k + 2
√

2π(2j + 1)!(1 + τ)δj,k. (5.21)

Let us employ the notation

Lj,k = Ij,k + Jj,k. (5.22)

Then, from (5.9), (5.17) and (5.21), we obtain the recursion relations

Lj+1,k = (2j + 2)Lj,k − 2
√

2π(2j + 2)!(1 + τ)δj+1,k, j � 0, k � 1,
(5.23)

Lj,k+1 = (2k + 1)Lj,k + 2
√

2π(2j + 1)!(1 + τ)δj,k, j � 0, k � 0.

Using these recursion relations and noting

L0,0 = −2
√

2π(1 + τ), (5.24)

we can readily find that (5.3) holds.

6. Asymptotic properties of the correlations

6.1. Eigenvalue support

The eigenvalue support for the real Ginibre ensemble (τ = 0 case) is to leading order a circle
of radius

√
N . To gain some insight into its expected form for 0 � τ < 1, consider the portion

of (2.7) which is dependent on {zj := xj + iyj }j=1,...,(N−k)/2. For yj large this portion is
proportional to (1.2) with N �→ (N − k)/2. As remarked below the latter equation, previous
analysis of the one-point correlation has revealed that for PDF (1.2) the density is supported
on an ellipse with semi-axes A and B given by (1.3). The exact results obtained above can be
combined with the analysis of [12] to verify that this result persists in the present setting.

In [12] the boundary of the support is characterized by the values of (x, y) which maximize
the difference

ρc
(1)((x, y))|N �→N+1 − ρc

(1)((x, y)) (6.1)
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for large N. We know from (4.7) and (4.8) that

ρc
(1)((x, y)) = 2i e(y2−x2)/(1+τ) erfc

(√
2

1 − τ 2
y

)
Sc

τ (z̄, z). (6.2)

To compute the asymptotic form of (6.1), following the beginnings of a strategy used to
analyze the two-point correlation for (1.2) in [10], use will be made of an integral form of
(6.2). In this regard, from a standard integral representation of the Hermite polynomials we
have

Cn(z) = 1√
π

∫ ∞

−∞
e−t2

(z +
√

2τ it)n dt. (6.3)

It follows from this and corollary 1 that

Sc
τ (w, z) = 1

π(1 + τ)

∫ ∞

−∞
dt1 e−t2

1

∫ ∞

−∞
dt2 e−t2

2 Sc
0(w +

√
2τ it1, z +

√
2τ it2). (6.4)

On the other hand, substituting (4.17) into (4.8) gives for Sc
0 the simple expression

Sc
0(w, z) = w − z

2
√

2π

N−2∑
j=0

(wz)j

�(j + 1)
. (6.5)

Substituting (6.5) into (6.4) and making further use of (6.3) it follows that for large N, x, y

ρc
(1)((x, y))|N �→N+1 − ρc

(1)((x, y))

∼
√

2

π(1 + τ)

1

(N − 2)!
exp

(
− 1

1 − τ 2

(
(x2 + y2) − τ(x2 − y2)

)) |CN−2(z)|2.

This same function of x, y and N results from studying difference (6.1) in the case of PDF
(1.2). As remarked above, working in [12] deduces from this that the boundary of the support
is given by an ellipse with semi-axes specified by (1.3).

6.2. Density of real eigenvalues

Next asymptotic properties of the density of real eigenvalues will be considered. According
to (4.3) and (4.5)

ρr
(1)(x) = e−x2/2(1+τ)

2
√

2π(1 + τ)

N/2−1∑
k=0

1

(2k)!
(�2k(x)R2k+1(x) − �2k+1(x)R2k(x)) . (6.6)

The mean number of real eigenvalues is obtained by integrating ρr
(1)(x) over the real line.

Making use of (6.6), (4.4) (with pk replaced by Rk), (4.16) and theorem 1 shows

∫ ∞

−∞
ρr

(1)(x) dx = 2

√
τ

π

N/2−1∑
k=0

1

(2k)!

(τ

2

)2k
∫ ∞

−∞
e−2τx2/(1+τ) (H2k(x))2 dx. (6.7)

Further, use of a tabulated integral [15, section 7.373] and a Kummer transformation for 2F1,
gives∫ ∞

−∞
e−2τx2/(1+τ)(H2k(x))2 dx = 22k−1/2

(
1 + τ

1 − τ

)1/2

τ−2k−1/2�(2k + 1/2)

× 2F1(1/2, 1/2;−2k + 1/2;−τ/(1 − τ)). (6.8)
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For large k the 2F1 function is to leading order equal to unity. Hence the leading-order behavior
of a general term in (6.7) is√

1

2π

(
1 + τ

1 − τ

)1/2 1

(2k)1/2

and so for large N∫ ∞

−∞
ρr

(1)(x) dx ∼
√

2N

π

(
1 + τ

1 − τ

)1/2

. (6.9)

Substituting (6.8) into (6.7) and taking τ → 0 shows

lim
τ→0

∫ ∞

−∞
ρ

(r)

(1)(x) dx =
√

2

π

N/2−1∑
k=0

�(2k + 1/2)

(2k)!
=

√
2

N/2−1∑
k=0

(4k − 1)!!

(4k)!!
, (6.10)

where the second equality follows upon use of the duplication formula for �(z). Result (6.10)
was first obtained in [7].

To analyze the density itself for large N, we again make use of (4.4) (with pk replaced by
Rk), as well as the identity

R2k+2(x) − (2k + 1)R2k(x) = −(1 + τ) ex2/2(1+τ) d

dx
(e−x2/2(1+τ)C2k+1(x))

(cf (4.16); this can be verified using (4.14), (4.15)) to rewrite (6.6) in the simplified form

ρr
(1)(x) = e−x2/(1+τ)

√
2π

N−2∑
k=0

1

k!
(Ck(x))2 +

e−x2/2(1+τ)

2
√

2π(1 + τ)

CN−1(x)�N−2(x)

(N − 2)!
. (6.11)

Use can now be made of the classical summation formula
∞∑

k=0

t kHk(x)Hk(y)

k!2k
= (1 − t2)−1/2 e−t2(x2+y2)/(1−t2) e2xyt/(1−t2), |t | < 1 (6.12)

to conclude

ρbulk
(1) (x) := lim

N→∞
ρr

(1)(x) = 1√
2π(1 − τ 2)

. (6.13)

With the leading-order support of the real eigenvalues the interval [−√
N(1 + τ),

√
N(1 + τ)],

to leading order the mean number of eigenvalues must be equal to 2
√

N(1 + τ) (the length of
this interval) times density (6.13). This reclaims (6.9).

We turn our attention now to the neighborhood of the spectrum edge. In the case of the
real Ginibre ensemble (τ = 0) the explicit form of the density profile about the spectrum edge
at x = √

N was exhibited as [11]

lim
N→∞

ρr
(1)(

√
N + X)

∣∣∣∣
τ=0

= 1√
2π

(
1

2
(1 − erf

√
2X) +

e−X2

2
√

2
(1 + erfX)

)
. (6.14)

For general 0 � τ < 1 the density at the spectrum edge is analyzed by setting x =
(1+τ)

√
N +X in (6.11) then taking the limit N → ∞. As is distinct from the bulk scaling, the

summation and the term distinct from the summation both give O(1) contributions. Consider
first the latter.

To calculate the explicit form of the contributions, our main tool is the Plancherel–Rotach
asymptotic formula [5, 22]

Hn(x) ∼ (2n)n exp

(
x2 − x

√
x2 − 2n − n

2
− n log(x −

√
x2 − 2n)

)

×
√

1

2

(
1 +

x√
x2 − 2n

)
(6.15)
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valid for n large and x >
√

2n. Recalling (4.11) we require this formula with x =√
N/2(

√
τ + 1/

√
τ) + X/

√
2τ , n = N − k. A straightforward but tedious calculation gives

that for k fixed

HN−k(x) ∼ (2N)N−k e−k(1 − τ)−1/2

× exp

(
N

2
(τ − log 2N − log τ) +

√
NX − X2

2(1 − τ)
+ k +

k

2
log 2N +

k

2
log τ

)
.

(6.16)

Consider now the final term in (6.11). The asymptotic form of CN−1(x) can be read off (6.15)
by setting k = 1. To use it to deduce the asymptotic form of �N−2(x) we require the integral
evaluation [15]∫ ∞

−∞
e−x2

H2m(xy) dx = √
π

(2m)!

m!
(y2 − 1)m.

This formula allows us to write

�N−2(x) =
(τ

2

)N/2−1
(√

2π(1 + τ)
(N − 2)!

(N/2 − 1)!
τ 1−N/2 − 2

∫ ∞

x

e−t2/2(1+τ)HN−2

(
t√
2τ

)
dt

)
.

(6.17)

It is in this form that we substitute (6.16) with k = 2. Combining results and making use too
of Stirling’s formula allows us to compute the sought limiting form,

lim
N→∞

(
e−x2/2(1+τ)

2
√

2π(1 + τ)

CN−1(x)�N−2(x)

(N − 2)!

∣∣∣∣
x=(1+τ)

√
N+X

)

= 1

(1 − τ 2)1/2

e−X2/(1−τ 2)

4
√

π
(1 + erf(X/

√
1 − τ 2)). (6.18)

To analyze the sum in (6.11) the asymptotic expansion (6.16) must be extended to include
terms O(k/

√
N). One finds these terms to be the multiplicative factor

exp

(
− k2τ

2N(1 − τ)
− kX√

N(1 − τ)

)
.

Noting too from Stirling’s formula that

1

(N − k)!
∼ (2πN)1/2 exp

(
N log N − N − k log N +

k2

2N

)
,

after rearranging the order of summation so that k �→ N − k(k = 2, . . . , N) and recognizing
that a Riemann sum approximation to definite integral results we find

lim
N→∞

e−x2/(1+τ)

√
2π

N−2∑
k=0

1

k!
(Ck(x))2

∣∣∣∣
x=(1+τ)

√
N+X

= 1

(1 − τ 2)1/2

1

2
√

2π
(1 − erf(

√
2X/(1 − τ 2)1/2)). (6.19)

Now adding together (6.18) and (6.19) gives for the edge density

ρ
edge
(1) (X) := lim

N→∞
ρr

(1)((1 + τ)
√

N + X) = 1√
2π(1 − τ 2)

×
(

1

2
(1 − erf(

√
2X/(1 − τ 2)1/2)) +

e−X2/(1−τ 2)

2
√

2
(1 + erf(X/(1 − τ 2)1/2))

)
.

(6.20)

Note that this agrees with (6.14) in the case τ = 0.
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We observe from (6.20) that ρ
edge
(1) (X) dX for general 0 � τ < 1 is obtained from the case

τ = 0 by the simple scaling X �→ X/
√

1 − τ 2. Note that this same rule is valid for the bulk
density of real eigenvalues (6.13). Indeed it is reasonable to expect that all local correlations
are only altered by this change of scale, as the point process for general 0 � τ < 1 is locally
identical to that for the point process in the case τ = 0, except that the two-dimensional bulk
density is scaled by a factor of 1/(1 − τ 2). We will now proceed to exhibit this fact for the
general real–real and complex–complex correlations in the bulk.

6.3. k-point correlations in the bulk

Consider first the complex–complex case. Setting

Ŝc
τ (w, z) := e−(z2+w2)/2(1+τ)Sc

τ (w, z),

we see that (4.7) can be rewritten

ρc
(n)((x1, y1), . . . , (xn, yn))

=
n∏

l=1

(
2i erfc

(√
2

1 − τ 2
yl

))
Pf

[
Ŝc

τ (z̄j , z̄k) Ŝc
τ (z̄j , zk)

Ŝc
τ (zj , z̄k) Ŝc

τ (zj , zk)

]
. (6.21)

Now, it is immediate from (6.5) that

lim
N→∞

Sc
0(w, z) = w − z

2
√

2π
ewz.

Substituting this into (6.3) and computing the resulting Gaussian integrals gives

lim
N→∞

Sc
τ (w, z) = (w − z)

2
√

2π(1 − τ 2)
exp

(
− τ

2(1 − τ 2)
(z2 + w2) +

1

1 − τ 2
zw

)
. (6.22)

Consequently

lim
N→∞

Ŝc
τ (w, z) = (w − z)

2
√

2π(1 − τ 2)
exp

(
− (z − w)2

2(1 − τ 2)

)
. (6.23)

Substituting into (6.21) gives the bulk complex–complex correlations. The feature that the
bulk limiting value of

ρc
(n)((x1, y1), . . . , (xn, yn))

n∏
l=1

dxl dyl (6.24)

for general 0 � τ < 1 is gotten from the τ = 0 case by the replacements

(xl, yl) �→ (xl/
√

1 − τ 2, yl/
√

1 − τ 2)

is evident.
It remains to consider the real–real case. Proceeding as in the derivation of (6.11) shows

that (4.5) can be rewritten

Sr(x, y) = e−(x2+y2)/2(1+τ)

√
2π

N−2∑
k=0

1

k!
Ck(x)Ck(y) +

e−y2/2(1+τ)

2
√

2π(1 + τ)

CN−1(y)�N−2(x)

(N − 2)!
(6.25)

As for the derivation of (6.13), we use (6.12) to both deduce that the final term vanishes as
N → ∞ (a consequence of the convergence of the sum) and to give a closed form evaluation
of the summation. It follows that

lim
N→∞

Sr(x, y) = 1√
2π(1 − τ 2)

e−(x−y)2/2(1−τ 2). (6.26)
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In view of formulae (4.6) for the remaining quantities in (4.3), as for (6.24) we have that the
limiting bulk value of

ρr
(n)(x1, . . . , xn) dx1 · · · dxn

for general 0 � τ < 1 is gotten from the τ = 0 case by the replacements xj �→ xj/
√

1 − τ 2.

6.4. The weakly non-symmetric limit

In relation to the ensemble interpolating between the complex Ginibre ensemble and the GUE,
it was exhibited in [13] that well-defined correlations result by setting τ = 1 − α2/N , then
taking N → ∞. Similarly, scaled correlations were computed in this limit for the ensemble
interpolating between the real quaternion Ginibre ensemble and the GSE [17]. Here the scaled
correlations of the real Ginibre/ GOE interpolating ensemble will be calculated. Note that with
this scaling (1.3) gives that the eigenvalue support collapses onto the interval [−2

√
N, 2

√
N ]

of the real axis. The mean spacing between eigenvalues is then O(1/
√

N), suggesting that we
should also multiply coordinates by π/

√
N (the proportionality π is chosen for convenience,

then a unit real density results) before taking N → ∞.
Now, using the asymptotic expansion

�(n/2 + 1)

�(n + 1)
e−x2

Hn(x) = cos(
√

2n + 1x − nπ/2) + O(n−1/2),

we deduce from (6.25) that

π√
N

Sr
τ

(
πx√
N

,
πy√
N

) ∣∣∣∣
τ=1−α2/2N

∼ 1

2

√
π

2N

N−2∑
k=0

e−kα2/Nk!

2k((k/2)!)2
cos

(
π

√
k

N
(x − y)

)
.

Making use of Stirling’s formula, a Riemann sum approximation to a definite integral is
obtained, and we compute

lim
N→∞

π√
N

Sr
τ

(
πx√
N

,
πy√
N

) ∣∣∣∣
τ=1−α2/N

=
∫ 1

0
e−α2u2

cos πu(x − y) du. (6.27)

Note that in contrast to the correlations implied by (6.26), we see from (6.27) that the
correlations in the present setting of the weakly non-symmetric limit exhibit an algebraic
decay. For the limiting form of the complex–complex correlations, we first note from (6.3)–
(6.5) that

Sc
τ (w, z) = 1

2(1 + τ)
√

2π

N−2∑
j=0

Cj+1(w)Cj (z) − Cj(w)Cj+1(z)

�(j + 1)
.

Proceeding now as for the working which lead to (6.27) shows

lim
N→∞

(
π√
N

)2

Sc
τ

(
πw√

N
,

πz√
N

) ∣∣∣∣
τ=1−α2/N

= π

2

∫ 1

0
u e−α2u2

sin πu(w − z) du, (6.28)

where on the lhs we have used the fact that the complex–complex correlations must be scaled by
(π/

√
N)2 for each independent two-dimensional coordinate (x, y) to account for the measure

in (6.24). Substituting this into (4.7) and noting too that

e(y2
l −x2

l )/(1+τ) erfc

(√
2

1 − τ 2
yl

)
→ erfc

(πyl

α

)
gives the explicit weakly non-symmetric limiting form of ρc

(n).
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